Rutgers University: Real Variables and Elementary Point-Set Topology Qualifying Exam

January 2017: Problem 4 Solution

Exercise. Let $a, b \in \mathbb{R}, a<b$.
(a) Define what it means for a function $f:[a, b] \rightarrow \mathbb{C}$ to be "absolutely continuous"

Solution.

f is absolutely continuous on $[a, b]$ if $\forall \epsilon>0, \exists \delta>0$ s.t. for any finite set of disjoint intervals $\left(a_{1}, b_{1}\right), \ldots,\left(a_{N}, b_{N}\right)$ s.t. $\left(a_{j}, b_{j}\right) \subseteq[a, b]$ for all j,

$$
\sum_{1}^{N}\left(b_{j}-a_{j}\right)<\delta \Longrightarrow \sum_{1}^{n}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right|<\epsilon
$$

(b) Prove, using the definition of absolute continuity, that the product of two absolutely continuous functions is absolutely continuous.

Solution.

Let f and g be absolutely continuous functions.
Since f, g continuous, they are bounded on $[a, b]$
$\Longrightarrow \exists M, N^{\prime} \in \mathbb{N}$ s.t. $|f(x)| \leq M$ and $|g(x)| \leq N$ for all $x \in[a, b]$
Since f, g absolutely continuous, for any $\epsilon>0$,

$$
\begin{array}{rlll}
\exists \delta_{1}>0 \text { s.t. } & \sum_{1}^{n}\left(b_{j}-a_{j}\right)<\delta_{1} & \Longrightarrow & \sum_{1}^{n}\left(f\left(b_{j}\right)-f\left(a_{j}\right)\right)<\frac{\epsilon}{2 N}, \\
\text { and } \exists \delta_{2}>0 \text { s.t. } & \sum_{1}^{n}\left(b_{j}-a_{j}\right)<\delta_{2} & \Longrightarrow \quad \sum_{1}^{n}\left(g\left(b_{j}\right)-g\left(a_{j}\right)\right)<\frac{\epsilon}{2 M}
\end{array}
$$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then for $\sum_{1}^{n}\left(b_{j}-a_{j}\right)<\delta$,

$$
\begin{aligned}
\sum_{1}^{n}\left|f\left(b_{j}\right) g\left(b_{j}\right)-f\left(a_{j}\right) g\left(a_{j}\right)\right| & =\sum_{1}^{n}\left|f\left(b_{j}\right) g\left(b_{j}\right)-f\left(b_{j}\right) g\left(a_{j}\right)+f\left(b_{j}\right) g\left(a_{j}\right)-f\left(a_{j}\right) g\left(a_{j}\right)\right| \\
& \leq \sum_{1}^{n}\left[\left|f\left(b_{j}\right)\right| \cdot\left|g\left(b_{j}\right)-g\left(a_{j}\right)\right|+\left|g\left(a_{j}\right)\right| \cdot\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right|\right] \\
& \leq \sum_{1}^{n}\left[M\left|g\left(b_{j}\right)-g\left(a_{j}\right)\right|+N\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right|\right] \\
& =M \sum_{1}^{n}\left|g\left(b_{j}\right)-g\left(a_{j}\right)\right|+N \sum_{1}^{n}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right| \\
& <M\left(\frac{\epsilon}{2 M}\right)+N\left(\frac{\epsilon}{2 N}\right) \\
& =\epsilon
\end{aligned}
$$

Thus, $f(x) g(x)$ is absolutely continuous.

