Rutgers University: Real Variables and Elementary Point-Set Topology Qualifying Exam

January 2017: Problem 4 Solution

Exercise. Let $a, b \in \mathbb{R}$, a < b.

(a) Define what it means for a function $f:[a,b]\to\mathbb{C}$ to be "absolutely continuous"

Solution.

f is absolutely continuous on [a,b] if $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. for any finite set of disjoint intervals $(a_1,b_1),\ldots,(a_N,b_N)$ s.t. $(a_j,b_j)\subseteq [a,b]$ for all j,

$$\sum_{1}^{N} (b_j - a_j) < \delta \implies \sum_{1}^{n} |f(b_j) - f(a_j)| < \epsilon$$

(b) Prove, using the definition of absolute continuity, that the product of two absolutely continuous functions is absolutely continuous.

Solution.

Let f and g be absolutely continuous functions.

Since f, g continuous, they are bounded on [a, b]

$$\implies \exists M, N' \in \mathbb{N} \text{ s.t. } |f(x)| \leq M \text{ and } |g(x)| \leq N \text{ for all } x \in [a, b]$$

Since f, g absolutely continuous, for any $\epsilon > 0$,

$$\exists \delta_1 > 0 \text{ s.t.} \qquad \sum_{1}^{n} (b_j - a_j) < \delta_1 \qquad \Longrightarrow \qquad \sum_{1}^{n} (f(b_j) - f(a_j)) < \frac{\epsilon}{2N},$$
and
$$\exists \delta_2 > 0 \text{ s.t.} \qquad \sum_{1}^{n} (b_j - a_j) < \delta_2 \qquad \Longrightarrow \qquad \sum_{1}^{n} (g(b_j) - g(a_j)) < \frac{\epsilon}{2M},$$

Let $\delta = \min\{\delta_1, \delta_2\}$. Then for $\sum_{j=1}^{n} (b_j - a_j) < \delta$,

$$\sum_{1}^{n} \left| f(b_j)g(b_j) - f(a_j)g(a_j) \right| = \sum_{1}^{n} \left| f(b_j)g(b_j) - f(b_j)g(a_j) + f(b_j)g(a_j) - f(a_j)g(a_j) \right|$$

$$\leq \sum_{1}^{n} \left[\left| f(b_j) \right| \cdot \left| g(b_j) - g(a_j) \right| + \left| g(a_j) \right| \cdot \left| f(b_j) - f(a_j) \right| \right]$$

$$\leq \sum_{1}^{n} \left[M \left| g(b_j) - g(a_j) \right| + N \left| f(b_j) - f(a_j) \right| \right]$$

$$= M \sum_{1}^{n} \left| g(b_j) - g(a_j) \right| + N \sum_{1}^{n} \left| f(b_j) - f(a_j) \right|$$

$$\leq M \left(\frac{\epsilon}{2M} \right) + N \left(\frac{\epsilon}{2N} \right)$$

$$= \epsilon$$

Thus, f(x)g(x) is absolutely continuous.